
AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 1 of 28

Programming in machine code on the Amiga

A. Forness & N. A. Holten
Copyright 1989 Arcus
Copyright 1989 DATA SCHOOL

Issue 4

Content
Machine Code III
Bitmap
Color Registers
Bitplane DMA time
Over Scan

DATA SCHOOL
Postbox 62
Nordengen 18
2980 Kokkedal

Phone: 49 18 00 77
Postgiro: 7 24 23 44

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 2 of 28

MACHINE CODE III

So we need to program a bit in the MC again. We start with an easy program example that
illustrates how different things are done in MC. First, the program's layout:

Program example 0401:

1 start:
2 move.l #$00, D0
3 move.l #$04, D1
4 lea.l table, A0
5
6 loop0l:
7 add.w (A0)+,D0
8 dbra D1, loop01
9
10 lea.l result, A0
11 move.l D0,(A0)
13 RTS
14
15 result:
16 blk.l 1,0
17
18 table:
19 dc.w 2,4,6,8,10

This program takes the numbers defined in line 19 and adds them. The result ends up in a
longword in the data register D0. The program performs not much, but it gives useful insights
for later use.

Line 1: This is the start of the program and the starting point has been labeled "start".

K-Seka has now a reference named "start" and puts the address of the
beginning of the program into this variable.

Line 2: We need a data register to sum up the numbers (2, 4, 6, 8, and 10) – here we
chose register D0. We clear the register by moving the constant value $00 into
it. We could have used the command “clr.l D0” (clear long word of data
register D0) instead. It would have given a faster code than
“move.l #$00, D0”.

Line 3: We must sum up 5 numbers, so we put a counter into data register D1. The

loop01 we let run five times and each time load the next number, which we
sum to the number in D0. Since the loop01 has to be executed five times, we
move the constant value of 4 into register D1 in which we count the number of
loops. We count down this way: 4, 3, 2, 1 and 0 – in total 5.

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 3 of 28

Line 4: Loads the effective address of the start of the five numbers (from Line 19) into

the address register A0. In line 19 we define five constant words and store the
numbers 2,4,6,8 and 10. The assembler creates a variable called "table" (in line
18) and puts the address of the first of our five numbers (2) into the variable; to
know where it can reference the numbers. We can properly access the
subsequent numbers by using an offset. This offset is the distance (measured in
number of bytes) between the first defined number (where the label points to),
and the number we want to access. In this example it plays no role, where our
machine program ends. There will always be the same distance between
program startup and our five constants we have defined.

Line 6: Is a label we have called the “loop0l”. Add note the colon (:) to show that this

is a label, and that the word “loop0l” is unique. See also the explanation for
line 1 if you have many loops in your program, and this is very likely, it may
make sense either to enumerate them sequentially: loop0l, loop02, loop03 etc.
or providing them with descriptive name like e.g. “test”, “copper”, “buffer”, etc.
In K-Seka the labels can consist of as many characters (and almost all
characters) you want. You are not bound by a maximum length for your label
names. Labels are not case-sensitive, so if you have two labels, called
“dataschool” and "DATASCHOOL" K-Seka will give you an error because it
sees the two labels as the same.

Line 7: In the first execution run of our loop “2” is fetched from the memory - A0

contains the address of the first number. It is then added to the register D0 and
the address in A0 is increased by two bytes (remember we're working with
words = 2 bytes) so the address in A0 points to the next number in memory.

Line 8: The instruction "dbra" decreases the register D1 about 1 and then D1 is tested

if the content is less than zero (actually “-1”, it is explained in the second issue).
If not the program jumps back to line 7, and the loop is executed once more.

Line 10: When all our numbers are added, we load the effective address of the memory

we labeled "result" into A0 – which is defined at line 15.

Line 11: The result of the addition (as a longword) is moved from D0 to the memory

part labeled “result” which address was previously loaded to A0 - see Line 10

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 4 of 28

Line 16: The program ends here and returns to the calling instance (e,g, to K-Seka if you
started the program from within K-Seka or to the CLI if you started it from
there).

Line 15: The label of the memory part called "result".

Line 16: Here a longword is reserved which is set to 0. In this longword our result is

stored.

Line 18: Read the explanation for line 4 again (was explained there). Once you have

written this program into the editor, you must assemble it. You have to type "a",
and when K-Seka prompts for OPTIONS> write “vh” and press RETURN. It
will now assemble the program and stop on each line. Press the spacebar to
continue. If you simply type "v" as an option then the assembler will scroll
non-stop. If you do not enter any options there is no output on the screen.

You start the program by typing "jstart" (jump to label "start").

At the list of registers the K-Seka shows after the program was executed, one can see that D0
contains $1E (30) - and it is just the sum of 2+4+6+8+10.

But we put the result into memory as a word (line 11). Can we get K-Seka to show it to us? If
you writes "qresult" ("q" stands for query) K-Seka shows up the portion of memory that
contains our longword (with sum $1E). In the label “result” the address was stored pointing to
the definition of our longword. Beside the result you will see the figures $0002, $0004,
$0006,$0008, $000A, which is the hexadecimal representation of our numbers.

TASK 0401: We hope you understand everything so far and you are able and willing to
experiment with the program and change here and there. You can, for example, change the
values of the numbers to be summed.

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 5 of 28

BITPLANES I

A bitplane is a memory area of the Amiga, which contains screen graphics information (data).
The more colors you want to use, the more bitplanes you must reserved for video data. A
pixel (short for picture element) is the smallest point you can see on the screen. A pixel can be
“on” or “off“. Information on a pixel whether it is “on” or “off” are stored in a bit that is part
of the memory which was reserved for video data (the bitplanes).

Let's say that a bitplane starts at address $010000
BYTEs are arranged in this way:

PIXEL: *
BIT No: 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3
ADDRESS: $010000 $010001 $010002

The first screen line downloads its pixel data from address $10000, $010001, $010002 and so
on. When the first line is drawn, the electro-beam continues on the next line by download
more data from video memory.

If you have a screen that is 320 pixels wide, it corresponds to 320/8 = 40 bytes per. line. This
means that in our example the screen data for the second line is fetched from the address
$010028 (which represents an offset of 40 from the start of our Bitplane).

Task 0402: What is the starting address for line 4 with our example above?

The Amiga has many different ways to display graphics which are called the graphic- modes.
The following table lists the different graphics modes:

TYPE Resolution (X*Y) #BITPLANES #COLORS
Lores 320 * 256 1 – 6 2 - 64
Hires 640 * 256 1-4 2-16
Lores-LACE 320 * 512 1-6 2-64
Hires-LACE 640 * 512 1-4 2-16
HAM 320 * 256 6 4096
HAM-LACE 320 * 512 6 4096

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 6 of 28

Abbreviations in the left column:
Lores low resolution
Hires high resolution
Lores-lace low-resolution interlaced
Hires-lace high resolution interlaced
HAM hold and modify
HAM-lace hold and modify interlaced

All these modes will be explained as we come in contact with them during the course.

When several bitplanes are used, one can imagine them placed "on top of each other” as a
stack of cards. Try to imagine you 2 cards which have a small hole-raster over the whole
surface. These two cards are added so that the holes are exactly above each other.

Imagine that each card represents a BITPLANE and a hole represents a BIT (which may be
“1” or “0”). The cards are now exactly stacked upon each other - edge to edge and imagine
you saw that a pin is stuck through one of the holes.

These two holes (read bits) as the pin is stuck through, the Amiga uses them to find out what
color register to be used to color the point on the screen as the bits represent. For example if
there through the holes at the top left corner the needle was punctured through this shows that
the upper left pixels is set on your screen.

Let us use the Workbench screen as an example.

Workbench screen appears in hires with 640*256 pixels resolution and uses 2 bitplanes. In
this setup (2 planes) there can not be more than 4 colors on the screen simultaneously. Study
FIGURE 3 at the end of this issue and read the explanation below:

Let's say that bitplane 1 starts at address $010000 and bitplane 2 starts at address $020000.
Then imagine that bitplane 1 is positioned over bitplane 2. Each pixel is now represented by 2
bits, one from each bitplane. As you know, with a 2-bit numbers one can express values from
0 to 3

%00 = 0
%01 = 1
%10 = 2
%11 = 3

If the first bit in bitplane 1 is set to "1" and the first BIT in bitplane 2 is set to "0" will be: %01
(also number "1" in decimal). Notice that the top bitplane contains the LSB bit (the least
significant bit - that is why you get $01 and not $10, when they are coupled).

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 7 of 28

Let us study the so-called color registers in AMIGA. The Amiga has 32 color registers, each
consisting of a word (16 bits) which defines the color. The bits are divided as follows:

BitNo: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Content: - - - - R3 R2 R1 R0 G3 G2 G1 G0 B3 B2 B1 B0

As you may have guessed, that means R, G and B: red, green and blue. These colors are
called the basic colors. By mixing different quantities of red, green and blue the accurate color
is produced to be shown on the screen.

There is one small limitation: The Amiga can only mix them so that it will have 4096
different colors to "play" with (16 shades of each basic color): 16 * 16 * 16 = 4096). A TV-set
uses the same basic color, but can mix several million different colors.

R0 to R3 is a 4-bit group (Nibble), which may contain a value starting with 0 up to 15 (see
NOTE 1 if you can not remember why). It offers 16 different values, or with other words, 16
different shades. This also applies to G0 to G3, and B0to B3. The bits with number 12-15 are
not used, so you can forget them. (Commodore strongly warns using the "remaining" bits to
put data into for the sake of compatibility if some hardware will change in the future).

As already mentioned each color is adjusted in 16 steps. Let us take an example.

COLOR RED GREEN BLUE hexadecimal
Black 0 0 0 $0000
White 15 15 15 $0FFF
Yellow 15 15 0 $0FF0
Red 15 0 0 $0F00
Light blue 0 15 15 $00FF
Dark gray 7 7 7 $0777
Light gray 12 12 12 $0CCC
Pink 15 0 15 $0F0F

As you see the color becomes more intense the higher the number is. Therefore, the $0000
black (no color used), and $0FFF becomes white (full intensity of the three basic colors red,
green and blue). Given that the values consist of 4 bits (1 Nibble) it is very easy to write the
hexadecimal color:

Hexadecimal: 0 F F F
WHITE: - RED GREEN BLUE

Note the difference to the general color model where the basic colors are red, blue and yellow.

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 8 of 28

Now let’s get back to our example of bitplanes. So, when we are using 2 bitplanes as such the
Workbench screen gets a value from 0 to 3 for each pixel (remember two bitplanes are two
bits and two bits mean four colors). It works in the sense that if the value of a pixel is 2 – the
pixel will be colored with the color the color register with the index 2 contains.

The first color register (number 0) is at $DFF180 and is a word broad. The next color register
(number 1) is therefore at $DFF182 (a word = 2 Bytes). The third color register (number 2) is
at address $DFF184. If you put the value $0F00 into the third register (number 2), then the
pixels, we mentioned in the section above will be colored light red. Clear as black ink, isn’t it?

The color registers are numbered from 0 to 31. The edge of screen, the border retrieves the
color of the first color register (number 0 the $DFF180). So: if the value of the two bits of a
pixel are 0, it will have the same color as the border of the screen or the so called
“background” color.

Let us now imagine a lores display with 3 bitplanes. It can display 8 different colors (three
bitplanes mean three bit and 3 bit represent eight colors). Let's figure out how much memory
is needed: We know that the screen is 320 pixels wide. We know also that a byte has eight
bits. So: 320/8 = 40 bytes per. line. 40*256 lines = 10240 Bytes per bitplane. Finally we
multiply the number of planes: 10240 * 3 = 30720 bytes. So the answer is that the screen –
which is to display 8 colors – needs 30720 bytes of the Amiga’s chip memory.

This corresponds to 30 kB. So what is 30 kB? The small "k" means “kilo”. In everyday
speech the little “k” means 1000 units of something, e.g. kilometers or kilograms. In the data
world, however, the little “k” means 1024 units. Here we are talking about bytes, this means
30 kilobytes (30 kB). This number we get by dividing the number of bytes (30720) by 1024
(number of bytes in a "kilo"). The result is 30 kB. Note that the spelling of “kB”: small “k”
and big “B” it is not a standardized notation and so you can find different variations!

Now you can figure out that each bitplane you use take 10 kB of the Amiga's chip memory.
(10240/1024 = 10).

We now check our new knowledge with an application example:

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 9 of 28

Program example 0402 8(does work out of the box – see the stripes ;-):

1 move.w #$01a0, $dff096 ; dmacon
2
3 move.w #$1200, $dff100 ; bplcon0 1plane, color
4 move.w #$0000, $dff102 ; bplcon1 pf2,1 scroll
5 move.w #$0000, $dff104 ; bplcon2 pf prio
6 move.w #0, $dff108 ; bpl1mod
7 move.w #0, $dff10a ; bpl2mod
8 move.w #$2c81, $dff08e ; diwstrt
9 move.w #$f4c1, $dff090 ; diwstop high-bytes added (line below)
10 move.w #$38c1, $dff090 ; diwstop
11 move.w #$0038, $dff092 ; ddfstrt
12 move.w #$00d0, $dff094 ; ddfstop
13
14 lea.l screen, A1 ; address of screen mem.
15 lea.l bplcop, A2 ; address of cl to a2
16 move.l A1, D1 ; copy addr. to d1
17 move.w D1, 6(A2) ; low word into the cl
18 swap D1
19 move.w D1, 2(A2) ; hi word into the cl
20
21 lea.l copper, A1 ; load address of copperlist
22 move.l A1, $dff080 ; copcon
23
24 move.w #$8180, $dff096 ; dmacon
25
26 wait:
27 btst #6, $bfe001 ; wait for left mouse
28 bne wait
29
30 move.w #$0080, $dff096 ; dmacon
31 move.l $04, A6 ; exec base
32 move.l 156(A6), A1
33 move.l 38(A1), $dff080 ; restore original copper list
34 move.w #$80a0, $dff096 ; dmacon
35 rts
36
37 copper:
38 dc.w $2c01, $fffe
39 dc.w $0100, $1200
40
41 bplcop:
42 dc.w $00e0, $0000
43 dc.w $00e2, $0000
44
45 dc.w $0180, $0000 ; color 0 = black
46 dc.w $0182, $0ff0 ; color 1 = yellow
47

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 10 of 28

48 dc.w $ffdf, $fffe
49 dc.w $2c01, $fffe
50 dc.w $0100, $0200
51 dc.w $ffff, $fffe
52
53 screen:
54 blk.b 10240, $80 ; try other patterns like $ff, $f0, $00

BITPLANES II

This section of bitplanes we start by explaining what is happening in the copper-list in the
program of Issue III representing the red, white and blue lines:

Line 18 is waiting for monitor-line $90, h-position $01.
Line 19 is quite red in the color-register 0.
Line 20 is waiting for the monitor line $A0, h-position $01.
Line 21 is completely white in color-register 0.
Line 22 is waiting for the monitor line $A4, h-position $01.
Line 23 is quite blue in the color-register 0.
Line 24 is waiting for the monitor line $AA, h-position $01.
Line 25 is completely white in color-register 0.
Line 26 is waiting for the monitor line $AE, h-position $01.
Line 27 is quite red in the color-register 0.
Line 28 is waiting for monitor-line $BE, h- position $01.
Line 29 is completely black in color-register 0.

The copper-list is started by the main program and runs independently of everything else, over
and over again. This is also an example of to use the copper with only one color-register to get
more colors on the screen.

Task 0403: Study the copper list thoroughly. Then try to make different changes. See if you
can change it so that the lines are blue and yellow.

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 11 of 28

We will continue with the custom chip registers, their functions and settings:

$DFF100 (WRITE) - BPLCON0 (BITPLANE CONTROL 0):

BIT No. FUNCTION
15 hires
14 BPU2
13 BPU1
12 BPU0
11 HAM mode
10 dual play field
9 color enable
8 GAUD
7 --
6 --
5 --
4 --
3 LPEN enable
2 interlace
1 external resync
0 --

BIT 15: this bit should be set to “1” if to use hires (640 pixels horizontally)

BIT 12 - 14: This is a 3-bit group to specify how many bitplanes are used.

BIT 11: this bit should be set to “1” to use HAM (hold and modify) mode.

BIT 10: this bit should be set to “1” to activate the “dual-playfield” mode.

BIT 9: This bit will be set to “1” to get the color signal video output (no effect

on A500).

8 BIT: This bit is set to “1”, to get the sound to the genlock (GENLOCK

AUDIO ENABLE).

BIT 4-7: Not used.

BIT 3: this bit should be set to “1” if you want to use a light-pen.

BIT 2: this bit is set to “1” to activate interlace mode (512 lines vertically).

BIT 1: this bit is set to “1” when using a genlock.

BIT 0: Not used.

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 12 of 28

$DFF08E (WRITE) - DIWSTRT (DISPLAY WINDOW START) is organized as follows:

BIT No. FUNCTION
15 V7
14 V6
13 V5
12 V4
11 V3
10 V2
9 V1
8 V0
7 H7
6 H6
5 H5
4 H4
3 H3
2 H2
1 H1
0 H0

$DFF090 (WRITE) - DIWSTOP (DISPLAY WINDOW STOP) is organized as follows:

BIT No. FUNCTION
15 V7
14 V6
13 V5
12 V4
11 V3
10 V2
9 V1
8 V0
7 H7
6 H6
5 H5
4 H4
3 H3
2 H2
1 H1
0 H0

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 13 of 28

$DFF092 (WRITE) - DDFSTRT (DISPLAY DATAFETCH START):

BIT No. FUNCTION
15 --
14 --
13 --
12 --
11 --
10 --
9 --
8 --
7 H8
6 H7
5 H6
4 H5
3 H4
2 H3
1 --
0 --

$DFF094 (WRITE) - DDFSTOP (DISPLAY DATAFETCH STOP):

BIT No. FUNCTION
15 --
14 --
13 --
12 --
11 --
10 --
9 --
8 --
7 H8
6 H7
5 H6
4 H5
3 H4
2 H3
1 --
0 --

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 14 of 28

BITPLANE POINTERS:

BITPLANE ADDRESS HI / LO
1 $DFF0E0 HI (BIT 16-31)
1 $DFF0E2 LO (BIT 0-15)
2 $DFF0E4 HI (BIT 16-31)
2 $DFF0E6 LO (BIT 0-15)
3 $DFF0E8 HI (BIT 16-31)
3 $DFF0EA LO (BIT 0-15)
4 $DFF0EC HI (BIT 16-31)
4 $DFF0EE LO (BIT 0-15)
5 $DFF0F0 HI (BIT 16-31)
5 $DFF0F2 LO (BIT 0-15)
6 $DFF0F4 HI (BIT 16-31)
6 $DFF0F6 LO (BIT 0-15)

BPLCONO ($DFF100): This register contains many new options. We start to explain them at
the moment we need them. The rest comes in issue XII.

Hires set to "0" to set the width to 320 pixels (lores) or "1" to set the width to 640 pixels
(Hires).

BPU0-2 is a 3-bit group. The Bits are used to set the number of bitplanes to be used (0-6).
Color set to "1" to activate the color signal on video output. The bit is almost always to "1"
(no effect on A500).

BPLCON1 register ($DFF102 used in context with scrolling the screen. We return to this
register in a later issue.

BPLC0N2 register ($DFF104) used for the sprites and “dual-play-fields”. We return to this
register in issue V and issue XII.

MODUL0 registers ($DFF108 and $DFF10A) will be explained in issue VI in connection
with the blitter.

DIWSTRT ($ DFF08E) used to determine where the upper left corner must of the screen is
displayed on the monitor. The top line is usually line $2C (44 decimal). This position can be
between $15 and $FF (21 and 255 decimal). Another "standard"-position is $1C (28 decimal).
It leads to that the top line starts above the "plastic edge" of the monitor. This is called
“overscan”. Left position is usually $81 (lores) or $80 (Hires). If you want the picture to go
beyond the monitor’s edge (over-scan) use the position $71 (lores) or $70 (hires) that is 16
pixels wide.

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 15 of 28

Example: $2C81, $1C71, $2C80

We have now examined how to fix the sreen’s top left corner. The next register is called
DIWSTOP ($DFF090).

This register is used to determine the lower right corner of the screen. It is more complicated.
Let us begin with the right position. This value has, as in the second register, 8 bits, i.e. a byte,
which may contain values from 0 ($00) to 255 ($FF).

Let’s assume we must set up a lores display which is has a dimension of 320 x 256 pixels. If
we say that the left position is $81 (standard), it will say right position is $81 + $140 (320) =
$1C1. As you see, this is too large to fit in a byte. Therefore, the machine was designed to
complete the value. Thus, we just put $C1 into the register. The machine will add 256 ($100)
to. ATTENTION! This happens in the chip’s logic, rather than in software. This means that if
you put value $00 into the register, the actual value being $100.

As the last position we must enter the "bottom line" of the screen. If you try to count this out,
the numbers are also in this case too big. If the "top line" has the position $2C and we want a
screen that is 256 lines high, we get the figure $2C + $100 (256) = $12C (you think it might
work the same as before - unfortunately not!). The NTSC version of the Amiga which is used
e.g. in the U.S. has only 200 lines vertically, and has no problems with this register for $2C +
$C8 (200) = $F4. In Europe however, where we have 256 lines, we must do this: First put $F4
in the register and then added $38 (56) to the register. These two numbers will be added
inside the chip and we get the value $F4 + $38 = $12C. This is done like this:

move.w #$F4C1, $DFF090
move.w #$38C1, $ DFF090

These two operations must be executed right after each other, otherwise #$38C1 will be
considered as a new value, and not be added to the register. Remember that "right position"
($C1) stays unchanged.

Another thing we want to emphasize is that if you must set up a hires screen (640 pixels wide)
so you need lores size (320 pixels) when you count the values out.

So: If you want the "left position" of the hires using $80 (which is standard hires) and add up
to the 640, you will get a wrong number. You must take 640 / 2 = 320, for. We say that
DIWSTRT ($DFF08E) and DIWSTOP ($DFF090) are "lores numbers".

DDFSTRT ($DFF092) and DDFSTOP ($DFF094) are two other registers, used to set up the
screen. You do not really need to know what is happening with these registers because they
depend on the DIWSTRT and DIWSTOP values.

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 16 of 28

Let us start with lores first. If we say that the "left position" in DIWSTRT is $81 and we use
lores DDFSTRT must be $0038. Let us show it with the help of a formula:

LORES:

DDFSTRT: ($81/210) – 8,510 = $0038

DDFSTOP: (((32010/1610) - 110) * 810) + $0038 = $00D0

Remember that if DDFSTRT does not end with $0 or $8 then it is rounded down (e.g.: $0030,
$0038, $0040, etc.). DDFSTOP values must also end at $0 or $8, but are rounded up (e.g.:
$00E8, $00D0, $00D8, etc.).

HIRES:

DDFSTRT: ($80/210) - 410 = $003C

DDFSTOP: (((64010/1610) - 210) * 410) + $003C = $00D4

Values in DDFSTRT and DDFSTOP in hires mode always end with $4 or $C, and rounded
down in the same manner as in lores. DDFSTRT is rounded down and DDFSTOP is rounded
up.

Let us go back to the program example 0402.

Line 14: loads the effective address of our buffer into A1.

Line 15: loads the effective address of "bplcop:" (bottom of our copper list) into A2.

Line 16: copy content of A1 to D1.

Line 17: Insert the first 16 bits of D1 where the address in A2+6 points to. (A2 + 6)

points to the low-word of bitplane pointer 1 in the copper-list. The number 6 of
this instruction is called an offset. This means that 6 bytes are added to the
address in A2 but only for this instruction – the address in A2 is not changed.

Line 18: Swap the first 16 and last 16 bits in D1. This means swap the high-word with

the low-word of the register so you can access the high-word with a “move.w”
instruction which can only move the lower 16 bit of a register.

Line 19: Insert the first 16 bits of D1 (which actually was the high-word before) into the

address as (A2 + 2) which points the high-word of the bitplane pointer 1 in the
copper list.

Line 53: This is a label for our screen.

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 17 of 28

Line 53: Here a block of data is reserved – it is used four our video data. 10240 bytes
are enough for a screen with one bitplane and the dimensions of 320 x 256.
(320 / 8 = 40. 40 * 256 = 10240. 10240 * 1 = 10240).

In line 54 we set the whole memory to 0 (blk.b 10240,0).

Try now to put a line into this:
53 screen:
54 dc.b $80
55 blk.b 10240, 0

You will now see a pixel at the top of the screen's left corner. You also can experiment with
the fill-pattern of the block, e.g., if you change (the second parameter of) the instruction blk.b
10240, 0 to blk.b 10240, $80 you will see one pixel wide stripes with a clearance of 8 pixel.

Task 0404: Experiment with other numbers and fill patterns.

In directory "BEV04" of the course disk 1, you find the file labeled "SCREEN". This file
contains an image you can load into your screen buffer. This is done in K-Seka via the "ri"
(READ IMAGE) command. Do this:

Seka> ri
FILENAME> brev4/screen
BEGIN> screen
END>

When prompted with "BEGIN" that indicates the question where you want to load the file to.
You could now enter an absolute address or a label. In this case, you enter our screen buffer
label: "screen" and the file ends up there. On the question "END" press only RETURN to load
the entire file. Remember that you must assemble the program first. The display buffer is
cleared between each assembling, so you must read it back again.

BITPLANE III

1 move.w #$01a0, $dff096
2
3 move.w #$5200, $dff100
4 move.w #0, $dff102
5 move.w #0, $dff104
6 move.w #0, $dff108
7 move.w #0, $dff10a
8
9 move.w #$1c71, $dff08e
10 move.w #$f4d1, $dff090
11 move.w #$40d1 ,$dff090
12
13 move.w #$0030, $dff092
14 move.w #$00d8, $dff094
15

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 18 of 28

16 lea.l screen, A1
17 move.l #$dff180, A2
18 moveq #31, D0
19 colorloop:
20 move.w (A1)+, (A2)+
21 dbra D0, colorloop
22
23 move.l A1, D1
24 lea.l bplcop, A2
25 addq.l #2, A2
26 moveq #4, D0
27
28 bplloop:
29 swap D1
30 move.w D1, (A2)
31 addq.l #4, A2
32 swap d1
33 move.w D1, (A2)
34 addq.l #4, A2
35 add.l #12320, D1
36 dbra D0, bplloop
37
38 lea.l copper, A1
39 move.l A1, $dff080
40
41 move.w #$8180, $dff096
42
43 wait:
44 btst #6, $bfe001
45 bne wait
46
47 move.w #$0080, $dff096
48
49 move.l $4, A6
50 move.l 156(A6) ,A1
51 move.l 38(A1), $dff080
52
53 move.w #$80a0, $dff096
54
55 rts
56
57 copper:
58 dc.w $1c01, $fffe
59 dc.w $0100, $5200
60 dc.w $180, $000f
61 bplcop:
62 dc.w $00e0, $0000
63 dc.w $00e2, $0000
64 dc.w $00e4, $0000
65 dc.w $00e6, $0000
66 dc.w $00e8, $0000
67 dc.w $00ea, $0000
68 dc.w $00ec, $0000

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 19 of 28

69 dc.w $00ee, $0000
70 dc.w $00f0, $0000
71 dc.w $00f2, $0000
72
73 dc.w $ffdf, $fffe
74
75 dc.w $3401, $fffe
76
77 dc.w $0100, $0200
78
79 dc.w $ffff, $fffe
80
81 screen:
82 blk.l $3c38, $8000

Line 1: Turn off bitplane-, copper- and sprite-DMA.

Line 3: sets 5 bitplanes.

Line 4: scroll value to 0
Line 5: bitplane priority to 0
Line 6-7: even and odd modulo to 0
Line 9: Sets the left screen position to $71 and upper line to $1C. This results in

overscan – meaning both the left and upper position 16 PIXEL longer than
normal.

Line 10: Sets the right screen position to $D1, bottom line to $F4. This will result in that

we get right 16 pixel more. The lower line is now 244 - in other words, not
overscan. It comes in the next line.

Line 11: Sets the right screen position to $D1, adds $48 the bottom line position. The

bottom line is now been set at $F4 + $40, so overscan.

Line 9-11 has resulted in a screen which is 352 * 280

Line 13: Sets the display data fetch start to $0030 (see earlier for explanation).

Line 14: Sets display data fetch stop to $00D8. (See earlier for explanation).

Line 16: Loads the effective address of the "screen" into A1.

Line 17: Loads #$DFF180 into A2. $DFF180 as we know is the Color register 0. Please

be aware that it is the actual figure is $DFF180 to be loaded into A2 and
not a value that address $DFF180 suggests.

Line 18: Loads the number 31 (decimal) into D0. This register is used as numerator.

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 20 of 28

Line 19: The label “colorloop”.

Line 20: Copies the value address in A1 points to where the address A2 points to (one

word at a time - 2 Bytes). Then increases both addresses in A1 and A2 –
meaning that the next time the address in A1 and A2 point to the next word in
memory. This instruction will read the color data which are located in the
beginning of our image (which we must include after assembling with “ri”)
into color registers.

Line 21: Decreases D0 by one and tests D0 to be “-1” if not jump back to the "color

loop". It will run through the loop 32 times, so that we have initialized all color
registers.

Line 23: Copy the content of A1 into D1. A1 points to the first image display data byte.

Line 24: Load the effective address of "bplcop:" into the register A2. This is the location

where the bitplane pointers are initialized in the copperlist.

Line 25: “Add quick” the constant number of 2 to A2.

Line 26: Move “quick” the constant number 4 into D0. D0 is also used to count. This

time it counts the Bitplanes (5 planes => it loops until -1)

Line 28: The label bplloop.

Line 29: SWAP is a new instruction, which is used for exchanging the high- with the

low-word of a longword (bits 0-15 and bits16-31 respectively) in a register.

Line 30: Copy the word content (BIT 0-15 = the low-word) to the address A2 points to.

As you see, it will give the upper word from Dl (note that we performed a
SWAP before) into the copper-list’s move instruction (into the high-word of
the first bitplane pointer). In this case it’s a MOVE instruction to a register.
$DFF000 + $00E0 = $DFF0E0 (see explanation copper in issue III), which is
bitplane-pointer to bitplane 1. The Bitplane-pointer at the address $DFF0E0
must contain the upper word (BIT 16-31 = high-word) of the address of our
bitplane data. The address $DFF0E2, which also belongs to bitplane 1, should
contain the lower-word (BIT 0-15 = low-word) of the address of our bitplane
data. This word is also put into the COPPER-list in line 33. (see table of
bitplane-registers in the previous section).

Line 31: Adds (“quick”) the constant 4 to A2. This causes A2 to point to next COPPER-

instruction.

Line 32: Exchange high and low-word in D1 again => again in original position.

Line 33: Insert the low-word (BIT 0-15) from D1 into address that A2 points to.

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 21 of 28

Line 34: Adds (“quick”) the constant 4 to A2.

Line 35: Add the number 12320 (decimal) in D1. This leads that the address in D1

points to the next begin of the bitplane. This is used for copying the address
into COPPER-list. The number is calculated as follows: Our screen is 352
pixels wide (because we have 16 PIXEL extra on each side) and 352 / 8 = 44
bytes. The height of the screen is 280 since we defined 16 PIXEL additional
top and bottom, and 44 * 280 = 12320.

Line 36: Decrease the register D0 about 1. Test the register D0 for “-1”. If not jump

back to "bplloop:" label. This instruction performs the loop 5 times so that we
cover all bitplane addresses and copy them into the copper list.

Line 38: Load the address of the beginning of the copper-list into A1.

Line 39: Move the content of A1 at $DFF080 address - which is copper-pointer.

Line 41: Turn on bitplane- and copper-DMA.

Line 43: The label “wait”.

Line 44: Check if the seventh bit (Bit nr. 6) of address $BFE001 is not set (0). Bit No. 6

of this address is high ("1") if the left mouse button is not pressed - and "0" if
the button is pressed. This instruction will set the Z-flag to "1" if the test was
true (i.e. the bit was zero) - and "0" if not (i.e. the bit was set).

Line 45: This instruction makes a jump to "wait" if the Z-flag is "1". If the Z-flag is "0"

it will continue to the next instruction.

Line 47: Turns off copper-DMA.

Line 49: Loads the exec-base to register A6.

Line 50-51: Moves the address of the old copper-list back (this is NOT good coding style!)

to the copper-pointer. When the old copper-list starts again, it will show the
Seka screen (if you started the program from Seka).

Line 53: Enable copper- and sprite-DMA.

Line 55: End – return from subroutine meaning that it will give control back to Seka.

Line 57: Label to the copper-list.

Line 58: The copper instruction represents a WAIT instruction ($01, $1C). This lets the

copper wait until the electron beam has reached the start ($01) of line $1C (28
decimal). Remember that the copper is a separate processor with its own
instructions that MUST not be confused with the main processor (MC68000)
and its instructions.

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 22 of 28

While the copper carries out its program (the copper-list) in this program-
example the MC68000 most of the time does nothing but going through its
loop checking if the mouse button has been pressed. Another very important
thing is that $01 the position on the line (in this case line $1C) is NOT the
position 1 on the screen. The first position of the image (in this case) is $71,
representing 112 PIXEL longer to right than the position 1 You must imagine
that a screen line starts well outside the "visible" screen (about 5 cm left in the
air from the edge of the screen).

Line 59: Here the COPPER would move the number $5200 at the address $DFF100

which is BITPLANE CONTROL 0 register. View previous example.

Line 61: The label “bplcop”

Line 62: The copper will move the words, which were inserted by the main processor in

the line 23-36 and which represent the low-word of the first bitplane address to
the bitplane pointer $DFF0E0. As previously mentioned, these are the bits 16-
31 of the address of the bitplane pointer (the high word) to bitplane 1

Line 63: This line performs the same as above, but moves the low-word of the first

bitplane address to $DFF0E2, which are the bits 0-15 of the address of the
bitplane pointer (the low word) for bitplane 1.

Line 64-71: Performs the same as lines 62 and 63, but copies the high and low words of the

addresses of bitplanes 2, 3, 4 and 5. Understood? We hope so since this is very
important that you fully understand this!

Line 73: The copper waits for that the electron beam has reached the position on line

$DF $FF. Remember that you specify pixel in pairs for the horizontal position
in the WAIT instruction, so the actual position in this case is $FD * 2 = $1FA
or 506 decimal. The copper-instruction makes it possible to wait for a position
which is greater than $FF vertically. Line $100 will now be Line $00. So if we
want to wait in line $120 we first carry out this instruction, then we wait for
line $20

Line 75: Wait until line $34 - which is actually the line $134.

Line 77: The copper moves the number $0200 at $DFF100 address. As you see we have

at the top of a list a copper-move, which moves $5200 into the same address.
You may discover that the value $5200 puts the number of 5 bitplanes (see
previous chapter). The number $0200 will put the number to 0 bitplanes, which
gives a blank screen. If we don’t do that, we risk that the machine continues
drawing up the screen below the defined screen bottom. You will now think of
the screen size we defined with DIWSTRT and DIWSTOP?

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 23 of 28

Yes, this is correct… but some machines have an old version of the PAL chip
and they have problems when put to a PAL video resolution (a screen which is
higher than 200 lines). It is therefore best to use this method so that it works on
all AMIGAs.

Line 79: This copper-instruction is often called STOP. The copper stops and jumps to

the beginning of the copper list starting again processing the program. The
copper will do this indefinitely until we turn off the copper-DMA.

Line 81: Label “screen” to our screen buffer.

Line 82: Here we declare our screen buffer. Note that we have set a block of longwords

(blk.l). It can be handy if you have much memory, because in some individual
cases Seka will assemble your program twice as fast. Play with the fill-pattern
of the block definition to change the content of the bitplanes. This is handy if
you not include the graphics for this example…

To get this program to show anything other than a black screen, you must put something into
the display buffer. You find on the course disk in the directory "BREV04" a file called
"SCRÉEN2". You have already learned how to read in such a file with Seka to a certain
position (address/label) of your assembled code. Try to load this file to the "screen" label and
run the program. HAVE FUN!

BITPLANE DMA TIMING

Finally in this issue, we must take a look at the "time slot allocation per horizontal line"which
we had in issue II.
Let us first explain what a cycle is. A cycle is a period, which is as long as the time it takes for
the electron beam to draw 2 pixels on the screen (4 hires Pixels). During this time you get an
Access (reading or writing) to the memory.

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 24 of 28

Study first the bitplane-DMA portion of the figure in issue II. Figure 2 in issue IV is a sample
of how the bitplane-DMA looks like when using lores, 2 bitplanes (4 colors) screen. The
fields are numbered cycles and represent which bitplane-DMA is in use and downloads video
data from memory. The number indicates the bitplane which retrieves the data.

The white (or unnumbered) fields are the available cycles, which may be used by the main
processor (MC68000), copper- or blitter-DMA. The distance from the point of $38 in the
figure for point of $40 corresponds to 16 pixels on the screen. The data to be used to display
16 pixels with 2 bitplanes is 4 Bytes data (a byte has 8 bits or 8 pixels). In one field bitplane-
DMA retrieves a word (2 bytes). You can see in the figure, there are two numbered boxes
each 16 pixel wide. It shows that it will get 2 per word. 16 pixels are enough data to show 2
bitplanes.

This way you can use the figure from issue II to see what happens when you use, e.g., 3
bitplanes (8 colors). As you see the line is split in two along the figure in issue II. The upper
part of the line is true if you are in lores (320) while the lower part is true if you are in hires
(640). As you see the lower part has two 1-bitplanes per 16 pixels width, while the top has
only a single 1-bitplane. This is because the machine in hires shows twice as many pixels on
the same width as in Lores.

So, the more bitplanes are witched on and operate the less cycles will be left for, e.g., the
main processor. The machine will therefore be slower and slower with each activated bitplane.

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 25 of 28

COMMENTS ON ISSUE IV

When we examine such a broad field as the Amiga, it often happens that we just jump back
and forth in our explanations. You must therefore sometimes take the former issues to refresh
your knowledge. Sometimes you even have to wait for the next issue, to fully understand the
current one you started with. Learning to program in MC on Amiga is done dynamically - it
requires action. Read difficult sections several times! All the information you need is there, so
if something seems foggy, read the section again and again ... and ... and.

It is very important that you use K-Seka (or another assembler) and practice your skills. Type
in all the examples and try to change them. If the program crashes, then try again. It is
amazing how much you learn from your own mistakes. We have learned Amiga MC using
this trial and error "method. It worked for us and it will also work for you.

Whatever you find out - do not give up!

If you have not already purchased your course disks #1 then now is the time to do it. In the
next issue is a very large example, which is only contained on the disk. Besides programming
examples the disk also contains an IFF-converter, a hunker-, a wave converter and a sinus
generator; so it is anyway good to have.

Sincerely,
DATA SCHOOL
Carsten Nordenhof

Mechanical, electronic, photographic or any other reproduction of this issue or parts thereof is
not permitted according Danish copyright law. Amiga is a trademark and copyrighted by
Commodore Computers.

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 26 of 28

Solutions to tasks in issue III

Task 0301: The sum is: %100110100 (CARRY set)

Task 0302: After an AND: %10000110

Task 0303: After a OR: %11011101

Task 0304: After an XOR: %00110101

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 27 of 28

AMIGA Programming in Machine Code – A.Forness & A.Holten
translation , layout & minor corrections by Amix73 a.k.a. Herpes of Sign in 2009

__

page 28 of 28

